K-Homology, Assembly and Rigidity Theorems for Relative Eta Invariants

نویسندگان

  • Nigel Higson
  • John Roe
چکیده

Nigel Higson and John Roe Abstract: We connect the assembly map in C∗-algebra K-theory to rigidity properties for relative eta invariants that have been investigated by Mathai, Keswani, Weinberger and others. We give a new and conceptual proof of Keswani’s theorem that whenever the C∗-algebra assembly map is an isomorphism, the relative eta invariants associated to the signature operator are homotopy invariants, whereas the relative eta invariants associated to the Dirac operator on a manifold with positive scalar curvature vanish.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability theorems for chiral bag boundary conditions

We study asymptotic expansions of the smeared L2-traces Fe−tP 2 and FPe−tP 2 , where P is an operator of Dirac type and F is an auxiliary smooth endomorphism. We impose chiral bag boundary conditions depending on an angle θ. Studying the θ-dependence of the above trace invariants, θindependent pieces are identified. The associated stability theorems allow one to show the regularity of the eta f...

متن کامل

L–eta–invariants and Their Approximation by Unitary Eta–invariants

Cochran, Orr and Teichner introduced L–eta–invariants to detect highly non–trivial examples of non slice knots. Using a recent theorem by Lück and Schick we show that their metabelian L–eta–invariants can be viewed as the limit of finite dimensional unitary representations. We recall a ribbon obstruction theorem proved by the author using finite dimensional unitary eta–invariants. We show that ...

متن کامل

Eta Invariants as Sliceness Obstructions and Their Relation to Casson-gordon Invariants

We give a useful classification of the metabelian unitary representations of π1(MK), where MK is the result of zero-surgery along a knot K ⊂ S . We show that certain eta invariants associated to metabelian representations π1(MK)→ U(k) vanish for slice knots and that even more eta invariants vanish for ribbon knots and doubly slice knots. We show that our vanishing results contain the Casson–Gor...

متن کامل

The Eta Invariant and Equivariant Bordism of Flat Manifolds with Cyclic Holonomy Group of Odd Prime Order

We study the eta invariants of compact flat spin manifolds of dimension n with holonomy group Zp, where p is an odd prime. We find explicit expressions for the twisted and relative eta invariants and show that the reduced eta invariant is always an integer, except in a single case, when p = n = 3. We use the expressions obtained to show that any such manifold is trivial in the appropriate reduc...

متن کامل

K-theoretic Invariants for Floer Homology

This paper defines two K-theoretic invariants, Wh1 and Wh2, for individual and one-parameter families of Floer chain complexes. The chain complexes are generated by intersection points of two Lagrangian submanifolds of a symplectic manifold, and the boundary maps are determined by holomorphic curves connecting pairs of intersection points. The paper proves that Wh1 and Wh2 do not depend on the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009